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The HistFactory p.d.f. template
[CERN-OPEN-2012-016 [https://cds.cern.ch/record/1456844]] is per-se
independent of its implementation in ROOT and sometimes, it’s useful to
be able to run statistical analysis outside of ROOT, RooFit, RooStats
framework.

This repo is a pure-python implementation of that statistical model for
multi-bin histogram-based analysis and its interval estimation is based
on the asymptotic formulas of “Asymptotic formulae for likelihood-based
tests of new physics”
[arXiv:1007.1727 [https://arxiv.org/abs/1007.1727]]. The aim is also
to support modern computational graph libraries such as PyTorch and
TensorFlow in order to make use of features such as autodifferentiation
and GPU acceleration.


Hello World

This is how you use the pyhf Python API to build a statistical model and run basic inference:

>>> import pyhf
>>> model = pyhf.simplemodels.hepdata_like(
...     signal_data=[12.0, 11.0], bkg_data=[50.0, 52.0], bkg_uncerts=[3.0, 7.0]
... )
>>> data = [51, 48] + model.config.auxdata
>>> test_mu = 1.0
>>> CLs_obs, CLs_exp = pyhf.infer.hypotest(
...     test_mu, data, model, test_stat="qtilde", return_expected=True
... )
>>> print(f"Observed: {CLs_obs}, Expected: {CLs_exp}")
Observed: 0.05251497423736956, Expected: 0.06445320535890459





Alternatively the statistical model and observational data can be read from its serialized JSON representation (see next section).

>>> import pyhf
>>> import requests
>>> wspace = pyhf.Workspace(requests.get("https://git.io/JJYDE").json())
>>> model = wspace.model()
>>> data = wspace.data(model)
>>> test_mu = 1.0
>>> CLs_obs, CLs_exp = pyhf.infer.hypotest(
...     test_mu, data, model, test_stat="qtilde", return_expected=True
... )
>>> print(f"Observed: {CLs_obs}, Expected: {CLs_exp}")
Observed: 0.3599840922126626, Expected: 0.3599840922126626





Finally, you can also use the command line interface that pyhf provides

$ cat << EOF  | tee likelihood.json | pyhf cls
{
    "channels": [
        { "name": "singlechannel",
          "samples": [
            { "name": "signal",
              "data": [12.0, 11.0],
              "modifiers": [ { "name": "mu", "type": "normfactor", "data": null} ]
            },
            { "name": "background",
              "data": [50.0, 52.0],
              "modifiers": [ {"name": "uncorr_bkguncrt", "type": "shapesys", "data": [3.0, 7.0]} ]
            }
          ]
        }
    ],
    "observations": [
        { "name": "singlechannel", "data": [51.0, 48.0] }
    ],
    "measurements": [
        { "name": "Measurement", "config": {"poi": "mu", "parameters": []} }
    ],
    "version": "1.0.0"
}
EOF





which should produce the following JSON output:

{
   "CLs_exp": [
      0.0026062609501074576,
      0.01382005356161206,
      0.06445320535890459,
      0.23525643861460702,
      0.573036205919389
   ],
   "CLs_obs": 0.05251497423736956
}








What does it support


	Implemented variations:
	
	☑ HistoSys


	☑ OverallSys


	☑ ShapeSys


	☑ NormFactor


	☑ Multiple Channels


	☑ Import from XML + ROOT via uproot [https://github.com/scikit-hep/uproot]


	☑ ShapeFactor


	☑ StatError


	☑ Lumi Uncertainty


	☑ Non-asymptotic calculators






	Computational Backends:
	
	☑ NumPy


	☑ PyTorch


	☑ TensorFlow


	☑ JAX






	Optimizers:
	
	☑ SciPy (scipy.optimize)


	☑ MINUIT (iminuit)








All backends can be used in combination with all optimizers.
Custom user backends and optimizers can be used as well.




Todo


	☐ StatConfig




results obtained from this package are validated against output computed
from HistFactory workspaces




A one bin example

import pyhf
import numpy as np
import matplotlib.pyplot as plt
import pyhf.contrib.viz.brazil

pyhf.set_backend("numpy")
model = pyhf.simplemodels.hepdata_like(
    signal_data=[10.0], bkg_data=[50.0], bkg_uncerts=[7.0]
)
data = [55.0] + model.config.auxdata

poi_vals = np.linspace(0, 5, 41)
results = [
    pyhf.infer.hypotest(
        test_poi, data, model, test_stat="qtilde", return_expected_set=True
    )
    for test_poi in poi_vals
]

fig, ax = plt.subplots()
fig.set_size_inches(7, 5)
ax.set_xlabel(r"$\mu$ (POI)")
ax.set_ylabel(r"$\mathrm{CL}_{s}$")
pyhf.contrib.viz.brazil.plot_results(ax, poi_vals, results)
fig.show()
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A two bin example

import pyhf
import numpy as np
import matplotlib.pyplot as plt
import pyhf.contrib.viz.brazil

pyhf.set_backend("numpy")
model = pyhf.simplemodels.hepdata_like(
    signal_data=[30.0, 45.0], bkg_data=[100.0, 150.0], bkg_uncerts=[15.0, 20.0]
)
data = [100.0, 145.0] + model.config.auxdata

poi_vals = np.linspace(0, 5, 41)
results = [
    pyhf.infer.hypotest(
        test_poi, data, model, test_stat="qtilde", return_expected_set=True
    )
    for test_poi in poi_vals
]

fig, ax = plt.subplots()
fig.set_size_inches(7, 5)
ax.set_xlabel(r"$\mu$ (POI)")
ax.set_ylabel(r"$\mathrm{CL}_{s}$")
pyhf.contrib.viz.brazil.plot_results(ax, poi_vals, results)
fig.show()
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Installation

To install pyhf from PyPI with the NumPy backend run

python -m pip install pyhf





and to install pyhf with all additional backends run

python -m pip install pyhf[backends]





or a subset of the options.

To uninstall run

python -m pip uninstall pyhf








Questions

If you have a question about the use of pyhf not covered in the
documentation [https://pyhf.readthedocs.io/], please ask a question
on the GitHub Discussions [https://github.com/scikit-hep/pyhf/discussions].

If you believe you have found a bug in pyhf, please report it in the
GitHub
Issues [https://github.com/scikit-hep/pyhf/issues/new?template=Bug-Report.md&labels=bug&title=Bug+Report+:+Title+Here].
If you’re interested in getting updates from the pyhf dev team and release
announcements you can join the pyhf-announcements mailing list [https://groups.google.com/group/pyhf-announcements/subscribe].




Citation

As noted in Use and Citations [https://scikit-hep.org/pyhf/citations.html],
the preferred BibTeX entry for citation of pyhf includes both the
Zenodo [https://zenodo.org/] archive and the
JOSS [https://joss.theoj.org/] paper:

@software{pyhf,
  author = {Lukas Heinrich and Matthew Feickert and Giordon Stark},
  title = "{pyhf: v0.6.1}",
  version = {0.6.1},
  doi = {10.5281/zenodo.1169739},
  url = {https://github.com/scikit-hep/pyhf},
}

@article{pyhf_joss,
  doi = {10.21105/joss.02823},
  url = {https://doi.org/10.21105/joss.02823},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {58},
  pages = {2823},
  author = {Lukas Heinrich and Matthew Feickert and Giordon Stark and Kyle Cranmer},
  title = {pyhf: pure-Python implementation of HistFactory statistical models},
  journal = {Journal of Open Source Software}
}
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Introduction

Measurements in High Energy Physics (HEP) rely on determining the
compatibility of observed collision events with theoretical predictions.
The relationship between them is often formalised in a statistical model
\(f(\bm{x}|\fullset)\) describing the probability of data
\(\bm{x}\) given model parameters \(\fullset\). Given observed
data, the likelihood \(\mathcal{L}(\fullset)\) then serves as the basis to test
hypotheses on the parameters \(\fullset\). For measurements based
on binned data (histograms), the \(\HiFa{}\) family of statistical models has been widely used
in both Standard Model measurements [intro-4] as
well as searches for new
physics [intro-5]. In this package, a
declarative, plain-text format for describing \(\HiFa{}\)-based likelihoods is
presented that is targeted for reinterpretation and long-term
preservation in analysis data repositories such as
HEPData [intro-3].


HistFactory

Statistical models described using \(\HiFa{}\) [intro-2]
center around the simultaneous measurement of disjoint binned
distributions (channels) observed as event counts \(\channelcounts\). For
each channel, the overall expected event rate 1 is the sum over a
number of physics processes (samples). The sample rates may be subject to
parametrised variations, both to express the effect of free parameters
\(\freeset\) 2 and to account for systematic uncertainties as a
function of constrained parameters \(\constrset\). The degree to which the latter can cause
a deviation of the expected event rates from the nominal rates is
limited by constraint terms. In a frequentist framework these constraint terms can be
viewed as auxiliary measurements with additional global observable data \(\auxdata\), which
paired with the channel data \(\channelcounts\) completes the
observation \(\bm{x} =
(\channelcounts,\auxdata)\). In addition to the partition of the full
parameter set into free and constrained parameters \(\fullset =
(\freeset,\constrset)\), a separate partition \(\fullset =
(\poiset,\nuisset)\) will be useful in the context of hypothesis testing,
where a subset of the parameters are declared parameters of interest \(\poiset\) and the
remaining ones as nuisance parameters \(\nuisset\).


(1)\[f(\bm{x}|\fullset) = f(\bm{x}|\overbrace{\freeset}^{\llap{\text{free}}},\underbrace{\constrset}_{\llap{\text{constrained}}}) = f(\bm{x}|\overbrace{\poiset}^{\rlap{\text{parameters of interest}}},\underbrace{\nuisset}_{\rlap{\text{nuisance parameters}}})\]

Thus, the overall structure of a \(\HiFa{}\) probability model is a product of the
analysis-specific model term describing the measurements of the channels
and the analysis-independent set of constraint terms:


(2)\[\begin{split}f(\channelcounts, \auxdata \,|\,\freeset,\constrset) = \underbrace{\color{blue}{\prod_{c\in\mathrm{\,channels}} \prod_{b \in \mathrm{\,bins}_c}\textrm{Pois}\left(n_{cb} \,\middle|\, \nu_{cb}\left(\freeset,\constrset\right)\right)}}_{\substack{\text{Simultaneous measurement}\\%
  \text{of multiple channels}}} \underbrace{\color{red}{\prod_{\singleconstr \in \constrset} c_{\singleconstr}(a_{\singleconstr} |\, \singleconstr)}}_{\substack{\text{constraint terms}\\%
  \text{for }\unicode{x201C}\text{auxiliary measurements}\unicode{x201D}}},\end{split}\]

where within a certain integrated luminosity we observe \(n_{cb}\)
events given the expected rate of events
\(\nu_{cb}(\freeset,\constrset)\) as a function of unconstrained
parameters \(\freeset\) and constrained parameters
\(\constrset\). The latter has corresponding one-dimensional
constraint terms
\(c_\singleconstr(a_\singleconstr|\,\singleconstr)\) with auxiliary
data \(a_\singleconstr\) constraining the parameter
\(\singleconstr\). The event rates \(\nu_{cb}\) are defined as


(3)\[\nu_{cb}\left(\fullset\right) = \sum_{s\in\mathrm{\,samples}} \nu_{scb}\left(\freeset,\constrset\right) = \sum_{s\in\mathrm{\,samples}}\underbrace{\left(\prod_{\kappa\in\,\bm{\kappa}} \kappa_{scb}\left(\freeset,\constrset\right)\right)}_{\text{multiplicative modifiers}}\, \Bigg(\nu_{scb}^0\left(\freeset, \constrset\right) + \underbrace{\sum_{\Delta\in\bm{\Delta}} \Delta_{scb}\left(\freeset,\constrset\right)}_{\text{additive modifiers}}\Bigg)\,.\]

The total rates are the sum over sample rates \(\nu_{csb}\), each
determined from a nominal rate \(\nu_{scb}^0\) and a set of multiplicative and
additive denoted rate modifiers \(\bm{\kappa}(\fullset)\) and
\(\bm{\Delta}(\fullset)\). These modifiers are functions of (usually
a single) model parameters. Starting from constant nominal rates, one
can derive the per-bin event rate modification by iterating over all
sample rate modifications as shown in (3).

As summarised in Modifiers and Constraints, rate modifications
are defined in \(\HiFa{}\) for bin \(b\), sample \(s\), channel
\(c\).  Each modifier is represented by a parameter \(\phi \in
\{\gamma, \alpha, \lambda, \mu\}\).  By convention bin-wise parameters are
denoted with \(\gamma\) and interpolation parameters with \(\alpha\).
The luminosity \(\lambda\) and scale factors \(\mu\) affect all bins
equally.  For constrained modifiers, the implied constraint term is given as
well as the necessary input data required to construct it.  \(\sigma_b\)
corresponds to the relative uncertainty of the event rate, whereas
\(\delta_b\) is the event rate uncertainty of the sample relative to the
total event rate \(\nu_b = \sum_s \nu^0_{sb}\).

Modifiers implementing uncertainties are paired with
a corresponding default constraint term on the parameter limiting the
rate modification. The available modifiers may affect only the total
number of expected events of a sample within a given channel, i.e. only
change its normalisation, while holding the distribution of events
across the bins of a channel, i.e. its “shape”, invariant.
Alternatively, modifiers may change the sample shapes. Here \(\HiFa{}\) supports
correlated an uncorrelated bin-by-bin shape modifications. In the
former, a single nuisance parameter affects the expected sample rates
within the bins of a given channel, while the latter introduces one
nuisance parameter for each bin, each with their own constraint term.
For the correlated shape and normalisation uncertainties, \(\HiFa{}\) makes use of
interpolating functions, \(f_p\) and \(g_p\), constructed from a
small number of evaluations of the expected rate at fixed values of the
parameter \(\alpha\) 3. For the remaining modifiers, the
parameter directly affects the rate.


Modifiers and Constraints







	Description

	Modification

	Constraint Term \(c_\singleconstr\)

	Input





	Uncorrelated Shape

	\(\kappa_{scb}(\gamma_b) = \gamma_b\)

	\(\prod_b \mathrm{Pois}\left(r_b = \sigma_b^{-2}\middle|\,\rho_b = \sigma_b^{-2}\gamma_b\right)\)

	\(\sigma_{b}\)



	Correlated Shape

	\(\Delta_{scb}(\alpha) = f_p\left(\alpha\middle|\,\Delta_{scb,\alpha=-1},\Delta_{scb,\alpha = 1}\right)\)

	\(\displaystyle\mathrm{Gaus}\left(a = 0\middle|\,\alpha,\sigma = 1\right)\)

	\(\Delta_{scb,\alpha=\pm1}\)



	Normalisation Unc.

	\(\kappa_{scb}(\alpha) = g_p\left(\alpha\middle|\,\kappa_{scb,\alpha=-1},\kappa_{scb,\alpha=1}\right)\)

	\(\displaystyle\mathrm{Gaus}\left(a = 0\middle|\,\alpha,\sigma = 1\right)\)

	\(\kappa_{scb,\alpha=\pm1}\)



	MC Stat. Uncertainty

	\(\kappa_{scb}(\gamma_b) = \gamma_b\)

	\(\prod_b \mathrm{Gaus}\left(a_{\gamma_b} = 1\middle|\,\gamma_b,\delta_b\right)\)

	\(\delta_b^2 = \sum_s\delta^2_{sb}\)



	Luminosity

	\(\kappa_{scb}(\lambda) = \lambda\)

	\(\displaystyle\mathrm{Gaus}\left(l = \lambda_0\middle|\,\lambda,\sigma_\lambda\right)\)

	\(\lambda_0,\sigma_\lambda\)



	Normalisation

	\(\kappa_{scb}(\mu_b) = \mu_b\)

	
	


	Data-driven Shape

	\(\kappa_{scb}(\gamma_b) = \gamma_b\)

	
	





Given the likelihood \(\mathcal{L}(\fullset)\), constructed from
observed data in all channels and the implied auxiliary data, measurements in the
form of point and interval estimates can be defined. The majority of the
parameters are nuisance parameters — parameters that are not the main target of the
measurement but are necessary to correctly model the data. A small
subset of the unconstrained parameters may be declared as parameters of interest for which
measurements hypothesis tests are performed, e.g. profile likelihood
methods [intro-1]. The Symbol Notation table provides a summary of all the
notation introduced in this documentation.


Symbol Notation





	Symbol

	Name





	\(f(\bm{x} | \fullset)\)

	model



	\(\mathcal{L}(\fullset)\)

	likelihood



	\(\bm{x} = \{\channelcounts, \auxdata\}\)

	full dataset (including auxiliary data)



	\(\channelcounts\)

	channel data (or event counts)



	\(\auxdata\)

	auxiliary data



	\(\nu(\fullset)\)

	calculated event rates



	\(\fullset = \{\freeset, \constrset\} = \{\poiset, \nuisset\}\)

	all parameters



	\(\freeset\)

	free parameters



	\(\constrset\)

	constrained parameters



	\(\poiset\)

	parameters of interest



	\(\nuisset\)

	nuisance parameters



	\(\bm{\kappa}(\fullset)\)

	multiplicative rate modifier



	\(\bm{\Delta}(\fullset)\)

	additive rate modifier



	\(c_\singleconstr(a_\singleconstr | \singleconstr)\)

	constraint term for constrained parameter \(\singleconstr\)



	\(\sigma_\singleconstr\)

	relative uncertainty in the constrained parameter









Declarative Formats

While flexible enough to describe a wide range of LHC measurements, the
design of the \(\HiFa{}\) specification is sufficiently simple to admit a declarative format that fully
encodes the statistical model of the analysis. This format defines the
channels, all associated samples, their parameterised rate modifiers and
implied constraint terms as well as the measurements. Additionally, the
format represents the mathematical model, leaving the implementation of
the likelihood minimisation to be analysis-dependent and/or
language-dependent. Originally XML was chosen as a specification
language to define the structure of the model while introducing a
dependence on \(\Root{}\) to encode the nominal rates and required input data of the
constraint terms [intro-2]. Using this
specification, a model can be constructed and evaluated within the
\(\RooFit{}\) framework.

This package introduces an updated form of the specification based on
the ubiquitous plain-text JSON format and its schema-language JSON Schema.
Described in more detail in Likelihood Specification, this schema fully specifies both structure
and necessary constrained data in a single document and thus is
implementation independent.




Additional Material


Footnotes


	1

	Here rate refers to the number of events expected to be observed
within a given data-taking interval defined through its integrated
luminosity. It often appears as the input parameter to the Poisson
distribution, hence the name “rate”.



	2

	These free parameters frequently include the of a given process, i.e. its cross-section
normalised to a particular reference cross-section such as that expected
from the Standard Model or a given BSM scenario.



	3

	This is usually constructed from the nominal rate and measurements of the
event rate at \(\alpha=\pm1\), where the value of the modifier at
\(\alpha=\pm1\) must be provided and the value at \(\alpha=0\)
corresponds to the corresponding identity operation of the modifier, i.e.
\(f_{p}(\alpha=0) = 0\) and \(g_{p}(\alpha = 0)=1\) for additive and
multiplicative modifiers respectively. See Section 4.1
in [intro-2].
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Likelihood Specification

The structure of the JSON specification of models follows closely the
original XML-based specification [likelihood-2].


Workspace

{
    "$schema": "http://json-schema.org/draft-06/schema#",
    "$id": "https://scikit-hep.org/pyhf/schemas/1.0.0/workspace.json",
    "$ref": "defs.json#/definitions/workspace"
}





The overall document in the above code snippet describes a workspace, which includes


	channels: The channels in the model, which include a description of the samples
within each channel and their possible parametrised modifiers.


	measurements: A set of measurements, which define among others the parameters of
interest for a given statistical analysis objective.


	observations: The observed data, with which a likelihood can be constructed from the model.




A workspace consists of the channels, one set of observed data, but can
include multiple measurements. If provided a JSON file, one can quickly
check that it conforms to the provided workspace specification as follows:

import json, requests, jsonschema

workspace = json.load(open("/path/to/analysis_workspace.json"))
# if no exception is raised, it found and parsed the schema
schema = requests.get("https://scikit-hep.org/pyhf/schemas/1.0.0/workspace.json").json()
# If no exception is raised by validate(), the instance is valid.
jsonschema.validate(instance=workspace, schema=schema)








Channel

A channel is defined by a channel name and a list of samples [likelihood-1].

{
    "channel": {
        "type": "object",
        "properties": {
            "name": { "type": "string" },
            "samples": { "type": "array", "items": {"$ref": "#/definitions/sample"}, "minItems": 1 }
        },
        "required": ["name", "samples"],
        "additionalProperties": false
    },
}





The Channel specification consists of a list of channel descriptions.
Each channel, an analysis region encompassing one or more measurement
bins, consists of a name field and a samples field (see Channel), which
holds a list of sample definitions (see Sample). Each sample definition in
turn has a name field, a data field for the nominal event rates
for all bins in the channel, and a modifiers field of the list of
modifiers for the sample.




Sample

A sample is defined by a sample name, the sample event rate, and a list of modifiers [likelihood-1].

{
    "sample": {
        "type": "object",
        "properties": {
            "name": { "type": "string" },
            "data": { "type": "array", "items": {"type": "number"}, "minItems": 1 },
            "modifiers": {
                "type": "array",
                "items": {
                    "anyOf": [
                        { "$ref": "#/definitions/modifier/histosys" },
                        { "$ref": "#/definitions/modifier/lumi" },
                        { "$ref": "#/definitions/modifier/normfactor" },
                        { "$ref": "#/definitions/modifier/normsys" },
                        { "$ref": "#/definitions/modifier/shapefactor" },
                        { "$ref": "#/definitions/modifier/shapesys" },
                        { "$ref": "#/definitions/modifier/staterror" }
                    ]
                }
            }
        },
        "required": ["name", "data", "modifiers"],
        "additionalProperties": false
    },
}








Modifiers

The modifiers that are applicable for a given sample are encoded as a
list of JSON objects with three fields. A name field, a type field
denoting the class of the modifier, and a data field which provides the
necessary input data as denoted in Modifiers and Constraints.

Based on the declared modifiers, the set of parameters and their
constraint terms are derived implicitly as each type of modifier
unambiguously defines the constraint terms it requires. Correlated shape
modifiers and normalisation uncertainties have compatible constraint
terms and thus modifiers can be declared that share parameters by
re-using a name 1 for multiple modifiers. That is, a variation of a
single parameter causes a shift within sample rates due to both shape
and normalisation variations.

We review the structure of each modifier type below.


Uncorrelated Shape (shapesys)

To construct the constraint term, the relative uncertainties
\(\sigma_b\) are necessary for each bin. Therefore, we record the
absolute uncertainty as an array of floats, which combined with the
nominal sample data yield the desired \(\sigma_b\). An example is
shown below:

{ "name": "mod_name", "type": "shapesys", "data": [1.0, 1.5, 2.0] }





An example of an uncorrelated shape modifier with three absolute uncertainty
terms for a 3-bin channel.


Warning

Nuisance parameters will not be allocated for any bins where either



	the samples nominal expected rate is zero, or


	the absolute uncertainty is zero.







These values are, in the context of uncorrelated shape uncertainties,
unphysical. If this situation occurs, one needs to go back and understand
the inputs as this is undefined behavior in HistFactory.



The previous example will allocate three nuisance parameters for mod_name.
The following example will allocate only two nuisance parameters for a 3-bin
channel:

{ "name": "mod_name", "type": "shapesys", "data": [1.0, 0.0, 2.0] }








Correlated Shape (histosys)

This modifier represents the same source of uncertainty which has a
different effect on the various sample shapes, hence a correlated shape.
To implement an interpolation between sample distribution shapes, the
distributions with a “downward variation” (“lo”) associated with
\(\alpha=-1\) and an “upward variation” (“hi”) associated with
\(\alpha=+1\) are provided as arrays of floats. An example is shown
below:

{ "name": "mod_name", "type": "histosys", "data": {"hi_data": [20,15], "lo_data": [10, 10]} }





An example of a correlated shape modifier with absolute shape variations for a 2-bin channel.




Normalisation Uncertainty (normsys)

The normalisation uncertainty modifies the sample rate by a overall
factor \(\kappa(\alpha)\) constructed as the interpolation between
downward (“lo”) and upward (“hi”) as well as the nominal setting, i.e.
\(\kappa(-1) = \kappa_{\alpha=-1}\), \(\kappa(0) = 1\) and
\(\kappa(+1) = \kappa_{\alpha=+1}\). In the modifier definition we record
\(\kappa_{\alpha=+1}\) and \(\kappa_{\alpha=-1}\) as floats. An
example is shown below:

{ "name": "mod_name", "type": "normsys", "data": {"hi": 1.1, "lo": 0.9} }





An example of a normalisation uncertainty modifier with scale factors recorded for the up/down variations of an \(n\)-bin channel.




MC Statistical Uncertainty (staterror)

As the sample counts are often derived from Monte Carlo (MC) datasets, they
necessarily carry an uncertainty due to the finite sample size of the datasets.
As explained in detail in [likelihood-2], adding uncertainties for
each sample would yield a very large number of nuisance parameters with limited
utility. Therefore a set of bin-wise scale factors \(\gamma_b\) is
introduced to model the overall uncertainty in the bin due to MC statistics.
The constrained term is constructed as a set of Gaussian constraints with a
central value equal to unity for each bin in the channel. The scales
\(\sigma_b\) of the constraint are computed from the individual
uncertainties of samples defined within the channel relative to the total event
rate of all samples: \(\delta_{csb} = \sigma_{csb}/\sum_s \nu^0_{scb}\). As
not all samples are within a channel are estimated from MC simulations, only
the samples with a declared statistical uncertainty modifier enter the sum. An
example is shown below:

{ "name": "mod_name", "type": "staterror", "data": [0.1] }





An example of a statistical uncertainty modifier.




Luminosity (lumi)

Sample rates derived from theory calculations, as opposed to data-driven
estimates, are scaled to the integrated luminosity corresponding to the
observed data. As the luminosity measurement is itself subject to an
uncertainty, it must be reflected in the rate estimates of such samples.  As
this modifier is of global nature, no additional per-sample information is
required and thus the data field is nulled. This uncertainty is relevant, in
particular, when the parameter of interest is a signal cross-section. The
luminosity uncertainty \(\sigma_\lambda\) is provided as part of the
parameter configuration included in the measurement specification discussed
in Measurements.  An example is shown below:

{ "name": "mod_name", "type": "lumi", "data": null }





An example of a luminosity modifier.




Unconstrained Normalisation (normfactor)

The unconstrained normalisation modifier scales the event rates of a
sample by a free parameter \(\mu\). Common use cases are the signal
rate of a possible BSM signal or simultaneous in-situ measurements of
background samples. Such parameters are frequently the parameters of
interest of a given measurement. No additional per-sample data is
required. An example is shown below:

{ "name": "mod_name", "type": "normfactor", "data": null }





An example of a normalisation modifier.




Data-driven Shape (shapefactor)

In order to support data-driven estimation of sample rates (e.g. for
multijet backgrounds), the data-driven shape modifier adds free,
bin-wise multiplicative parameters. Similarly to the normalisation
factors, no additional data is required as no constraint is defined. An
example is shown below:

{ "name": "mod_name", "type": "shapefactor", "data": null }





An example of an uncorrelated shape modifier.






Data

The data provided by the analysis are the observed data for each channel
(or region). This data is provided as a mapping from channel name to an
array of floats, which provide the observed rates in each bin of the
channel. The auxiliary data is not included as it is an input to the
likelihood that does not need to be archived and can be determined
automatically from the specification. An example is shown below:

{ "chan_name_one": [10, 20], "chan_name_two": [4, 0]}





An example of channel data.




Measurements

Given the data and the model definitions, a measurement can be defined.
In the current schema, the measurements defines the name of the
parameter of interest as well as parameter set configurations.  2
Here, the remaining information not covered through the channel
definition is provided, e.g. for the luminosity parameter. For all
modifiers, the default settings can be overridden where possible:


	inits: Initial value of the parameter.


	bounds: Interval bounds of the parameter.


	auxdata: Auxiliary data for the associated constraint term.


	sigmas: Associated uncertainty of the parameter.




An example is shown below:

{
    "name": "MyMeasurement",
    "config": {
        "poi": "SignalCrossSection", "parameters": [
            { "name":"lumi", "auxdata":[1.0],"sigmas":[0.017], "bounds":[[0.915,1.085]],"inits":[1.0] },
            { "name":"mu_ttbar", "bounds":[[0, 5]] },
            { "name":"rw_1CR", "fixed":true }
        ]
    }
}





An example of a measurement. This measurement, which scans over the parameter of interest SignalCrossSection, is setting configurations for the luminosity modifier, changing the default bounds for the normfactor modifier named mu_ttbar, and specifying that the modifier rw_1CR is held constant (fixed).




Observations

This is what we evaluate the hypothesis testing against, to determine the
compatibility of signal+background hypothesis to the background-only
hypothesis. This is specified as a list of objects, with each object structured
as


	name: the channel for which the observations are recorded


	data: the bin-by-bin observations for the named channel




An example is shown below:

{
    "name": "channel1",
    "data": [110.0, 120.0]
}





An example of an observation. This observation recorded for a 2-bin channel channel1, has values 110.0 and 120.0.




Toy Example

{
    "channels": [
        { "name": "singlechannel",
          "samples": [
            { "name": "signal",
              "data": [5.0, 10.0],
              "modifiers": [ { "name": "mu", "type": "normfactor", "data": null} ]
            },
            { "name": "background",
              "data": [50.0, 60.0],
              "modifiers": [ {"name": "uncorr_bkguncrt", "type": "shapesys", "data": [5.0, 12.0]} ]
            }
          ]
        }
    ],
    "observations": [
        { "name": "singlechannel", "data": [50.0, 60.0] }
    ],
    "measurements": [
        { "name": "Measurement", "config": {"poi": "mu", "parameters": []} }
    ],
    "version": "1.0.0"
}





In the above example, we demonstrate a simple measurement of a
single two-bin channel with two samples: a signal sample and a background
sample. The signal sample has an unconstrained normalisation factor
\(\mu\), while the background sample carries an uncorrelated shape
systematic controlled by parameters \(\gamma_1\) and \(\gamma_2\). The
background uncertainty for the bins is 10% and 20% respectively.




Additional Material


Footnotes


	1

	The name of a modifier specifies the parameter set it is controlled
by. Modifiers with the same name share parameter sets.



	2

	In this context a parameter set corresponds to a named
lower-dimensional subspace of the full parameters \(\fullset\).
In many cases these are one-dimensional subspaces, e.g. a specific
interpolation parameter \(\alpha\) or the luminosity parameter
\(\lambda\). For multi-bin channels, however, e.g. all bin-wise
nuisance parameters of the uncorrelated shape modifiers are grouped
under a single name. Therefore in general a parameter set definition
provides arrays of initial values, bounds, etc.
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[1]:






%pylab inline
from ipywidgets import interact
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D













Populating the interactive namespace from numpy and matplotlib







Piecewise Linear Interpolation

References: https://cds.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf

We wish to understand interpolation using the piecewise linear function. This is interpcode=0 in the above reference. This function is defined as (nb: vector denotes bold)


\[\eta_s (\vec{\alpha}) = \sigma_{sb}^0(\vec{\alpha}) + \underbrace{\sum_{p \in \text{Syst}} I_\text{lin.} (\alpha_p; \sigma_{sb}^0, \sigma_{psb}^+, \sigma_{psb}^-)}_\text{deltas to calculate}\]

with


\[\begin{split}I_\text{lin.}(\alpha; I^0, I^+, I^-) = \begin{cases} \alpha(I^+ - I^0) \qquad \alpha \geq 0\\ \alpha(I^0 - I^-) \qquad \alpha < 0 \end{cases}\end{split}\]

In this notebook, we’ll demonstrate the technical implementation of these interplations starting from simple dimensionality and increasing the dimensions as we go along. In all situations, we’ll consider a single systematic that we wish to interpolate, such as Jet Energy Scale (JES).

Let’s define the interpolate function. This function will produce the deltas we would like to calculate and sum with the nominal measurement to determine the interpolated measurements value.
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def interpolate_deltas(down, nom, up, alpha):
    delta_up = up - nom
    delta_down = nom - down
    if alpha > 0:
        return delta_up * alpha
    else:
        return delta_down * alpha







Why are we calculating deltas? This is some additional foresight that you, the reader, may not have yet. Multiple interpolation schemes exist but they all rely on calculating the change with respect to the nominal measurement (the delta).


Case 1: The Single-binned Histogram

Let’s first start with considering evaluating the total number of events after applying JES corrections. This is the single-bin case. Code that runs through event selection will vary the JES parameter and provide three histograms, each with a single bin. These three histograms represent the nominal-, up-, and down- variations of the JES nuisance parameter.

When processing, we find that there are 10 events nominally, and when we vary the JES parameter downwards, we only measure 8 events. When varying upwards, we measure 15 events.
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down_1 = np.array([8])
nom_1 = np.array([10])
up_1 = np.array([15])







We would like to generate a function \(f(\alpha_\text{JES})\) that linearly interpolates the number of events for us so we can scan the phase-space for calculating PDFs. The interpolate_deltas() function defined above does this for us.
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alphas = np.linspace(-1.0, 1.0)
deltas = [interpolate_deltas(down_1, nom_1, up_1, alpha) for alpha in alphas]
deltas[:5]
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[array([-2.]),
 array([-1.91836735]),
 array([-1.83673469]),
 array([-1.75510204]),
 array([-1.67346939])]






So now that we’ve generated the deltas from the nominal measurement, we can plot this to see how the linear interpolation works in the single-bin case, where we plot the measured values in black, and the interpolation in dashed, blue.
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plt.plot(alphas, [nom_1 + delta for delta in deltas], linestyle='--')
plt.scatter((-1, 0, 1), (down_1, nom_1, up_1), color='k')
plt.xlabel(r'$\alpha_\mathrm{JES}$')
plt.ylabel(r'Events')
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Text(0,0.5,'Events')
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